
Gradient boosting and ensemble learning

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

Why and when to use ensemble learning?

 Suppose you pose a complex question to thousands of random people, then

aggregate their answers. In many cases you will find aggregated answer is

better than an expert’s answer. This is called the wisdom of the crowd

 If you aggregate the predictions of a group of predictors (such as classifiers or regressors),

you will often get better predictions than with the best individual predictor

 A group of predictors is called an ensemble; thus, this technique is called Ensemble

Learning, and an Ensemble Learning algorithm is called an Ensemble method

 You will often use Ensemble methods near the end of a project, once you have already built a few

good predictors, to combine them into an even better predictor

 In fact, the winning solutions in Machine Learning competitions often involve several

Ensemble methods

2

1. Voting classifier

 Suppose you train a few classifiers, each one achieving about 80% accuracy

 A very simple way to create an even better classifier is to aggregate the predictions of each

classifier and predict the class that gets the most votes. This majority-vote classifier is

called a hard voting classifier

3

 If you build an ensemble containing 1,000

classifiers that are individually correct only 51%

of the time. If you predict the majority voted class,

you can hope for up to 75% accuracy!

 Only true if all classifiers are perfectly independent

and making uncorrelated errors!

 One way to get diverse classifiers is to train them

using very different algorithms. This increases the

chance that they will make very different types of

errors, improving the ensemble’s accuracy

https://math.stackexchange.com/questions/4363939/how-did-you-get-75-and-97-with-which-formula

Stacking

 Stacking is based on a simple idea: instead of using trivial functions (such as

hard/soft voting) to aggregate the predictions of all predictors in an ensemble,

why don’t we train a model to perform this aggregation?

4

 To train the blender (aggregator), you first need

to build the blending training set

 You can use cross-validation on every estimator

in the ensemble to get out-of-sample

predictions for each instance in the original

training set

 These can be used as the input features to train

the blender, and the targets can be simply be

copied from the original training set

2. Ensemble method - Bagging

 Another approach is to use the same training algorithm for every predictor but

train them on different dataset

5

 In other words, averaging a set of observations reduces

variance. Of course, this is not practical because we generally

do not have access to multiple training sets

 Instead, we choose random subsets of the training set. When

sampling is performed with replacement, this method is called

bagging. When sampling is performed without replacement, it is

called pasting

 Bootstrap aggregation, or bagging, is a general-purpose

procedure for reducing the variance of a statistical learning

method

 Recall that given a set of 𝑛 independent observations 𝑍1, … , 𝑍𝑛,

each with variance 𝜎2, the variance of the mean ҧ𝑍 of the

observations is given by 𝜎2/𝑛

https://dafriedman97.github.io/mlbook/content/c6/s1/bagging.html
https://online.stat.psu.edu/stat414/lesson/24/24.4

Bagging— continued

 In this approach we generate 𝐵 different bootstrapped training data sets

 We then train our method on the 𝑏th bootstrapped training set in order to get መ𝑓∗𝑏(𝑥), the

prediction at a point 𝑥. We then average all the predictions to obtain

መ𝑓𝑏𝑎𝑔 𝑥 =
1

𝐵

𝑏=1

𝐵

መ𝑓∗𝑏 𝑥

6

 For classification, we take a majority vote

among the 𝐵 predictions

 It scales well because the predictors can all be

trained in parallel and the predictions can be

made in parallel, too

 Feature sampling is also possible which is

called random subspaces methods

 When combining both, it is call random patches

https://ieeexplore.ieee.org/document/709601
https://link.springer.com/chapter/10.1007/978-3-642-33460-3_28

Out-of-Bag Error Estimation

 It turns out that there is a very straightforward way to estimate the test error of

a bagged model

 Recall that the key to bagging is that estimators are repeatedly fit to bootstrapped subsets of

the observations. One can show that on average, each bagged predictors makes use of

around two-thirds of the observations (the exact number of having 𝑗th observation is: 1 −

(1 −
1

𝑛
)𝑛)

 The remaining one-third of the observations not used to fit a given bagged predictor are referred

to as the out-of-bag (OOB) observations

 We can predict the response for the 𝑖th observation using each of the predictors in which that

observation was OOB. This will yield around 𝐵/3 predictions for the 𝑖th observation, which we

average (or vote)

 The resulting OOB error is a valid estimate of the test error for the bagged model, since the

response for each observation is predicted using only the predictors that were not fit using that

observation

7

3. Tree-based Methods

 Most of the ensemble algorithm will utilize decision tree for the base estimator

 Here we describe tree-based methods for regression and classification

 These involve firstly stratifying or segmenting the feature space into a number of simple

regions

 And use the mean or the mode response value for the training observations in the region to

which it belongs for inference

8

 Since the set of splitting rules used to

segment the feature space can be

summarized in a tree, these types of

approaches are known as decision-tree

methods

Details of the tree-building process

1. We divide the feature space — that is, the set of possible values for

𝑋1, 𝑋2, … , 𝑋𝑝— into 𝐽 distinct and non-overlapping regions, 𝑅1, 𝑅2, … , 𝑅𝐽

2. For every observation that falls into the region 𝑅𝑗 , we make the same

prediction, which is simply the mean of the response values for the training

observations in 𝑅𝑗
 In theory, the regions could have any shape. However, we choose to divide the feature

space into high-dimensional rectangles, or boxes, for simplicity and for ease of

interpretation of the resulting predictive model

 The goal is to find boxes 𝑅1, 𝑅2, … , 𝑅𝐽 that minimize the RSS, given by

𝑗=1

𝐽

𝑖∈𝑅𝑗

(𝑦𝑖 − ො𝑦𝑅𝑗)
2

ො𝑦𝑅𝑗 is the mean response for the training observations within the 𝑗th box

9

https://dafriedman97.github.io/mlbook/content/c5/s1/regression_tree.html

More details of the tree-building process

 Unfortunately, it is computationally infeasible to consider every possible

partition of the feature space into 𝐽 boxes

 For this reason, we take a top-down, greedy approach that is known as recursive binary

splitting

10

 The approach is top-down because it begins at the top of the

tree and then successively splits the feature space; each split

is indicated via two new branches further down on the tree

 It is greedy because at each step of the tree-building process,

the best split is made at that particular step, rather than

looking ahead and picking a split that will lead to a better tree

in some future step

More details of the tree-building process

 We first select the feature 𝑋𝑗 and the cutpoint 𝑠 such that splitting the feature

space into the regions {𝑋|𝑋𝑗 < 𝑠 } and {𝑋|𝑋𝑗 ≥ 𝑠 } leads to the greatest

possible reduction in RSS (choosing 𝑗 and 𝑠 to minimize)

𝑖:𝑥𝑖𝜖𝑅1(𝑗,𝑠)

(𝑦𝑖 − ො𝑦𝑅1)
2+

𝑖:𝑥𝑖𝜖𝑅2(𝑗,𝑠)

(𝑦𝑖 − ො𝑦𝑅2)
2

 Next, we looking for the best feature and best cutpoint in order to split the data

further so as to minimize the RSS within each of the resulting regions

 Instead of splitting the entire feature space, we split one of the two previously identified

regions. We now have three regions

 Again, we look to split one of these three regions further, so as to minimize the RSS. The

process continues until a stopping criterion is reached; for instance, we may continue until

no region contains more than five observations

11

Regularization

 The process described above may produce good predictions on the training set,

but is likely to overfit the data, leading to poor test set performance

 A simple way to limit a tree’s size is to directly regulate its depth, the size of its terminal

nodes (training observation belongs to them), or both

 A smaller tree with fewer splits (that is, fewer regions 𝑅1, 𝑅2, … , 𝑅𝐽) might lead

to lower variance and better interpretation at the cost of a little bias

 One possible alternative to the process described above is to grow the tree only so long as

the decrease in the RSS due to each split exceeds some (high) threshold

 This strategy will result in smaller trees, but is too short-sighted: a seemingly worthless

split early on in the tree might be followed by a very good split — that is, a split that leads

to a large reduction in RSS later on

12

Pruning a tree

 A better strategy is to grow a very large tree 𝑇0, and then prune it back in order

to obtain a subtree

 Cost complexity pruning — also known as weakest link pruning — is used to do this

 We consider a sequence of trees indexed by a nonnegative tuning parameter 𝛼. For each

value of α there corresponds a subtree 𝑇 ⊂ 𝑇0 such that

𝑚=1

|𝑇|

𝑖:𝑥𝑖∈𝑅𝑚

(𝑦𝑖 − ො𝑦𝑅𝑚)
2 + 𝛼|𝑇|

is as small as possible. Here |𝑇| indicates the number of terminal nodes of the tree 𝑇, 𝑅𝑚 is the

rectangle (i.e. the subset of feature space) corresponding to the 𝑚th terminal node, and ො𝑦𝑅𝑚 is the

mean of the training observations in 𝑅𝑚

 The tuning parameter α controls a trade-off between the subtree’s complexity

and its fit to the training data

13

14

Advantages and Disadvantages of Trees

 Pros

 Trees are very easy to explain to people. In fact, they are even easier to explain than linear

regression!

 Some people believe that decision trees more closely mirror human decision-making than

other regression and classification approaches

 Trees can be displayed graphically, and are easily interpreted even by a non-expert

(especially if they are small)

 Trees can easily handle qualitative features without the need to create dummy variables

 Cons

 Unfortunately, trees generally do not have the same level of predictive accuracy as some of

the other regression and classification approaches

 However, by aggregating many decision trees, the predictive performance of trees can be

substantially improved!

15

https://catboost.ai/en/docs/concepts/algorithm-main-stages_cat-to-numberic

Ensemble method - Random Forests

 Random forests provide an improvement over bagged trees by way of a small

tweak that decorrelates the trees which reduces the variance when averaging

 As in bagging with decision tree estimator, we build a number of decision trees on

bootstrapped training samples

 But when building these decision trees, each time a split in a tree is considered, a random

selection of 𝑚 features is chosen as split candidates from the full set of 𝑝 features

 The split is allowed to use only one of those 𝑚 features

 A fresh selection of 𝑚 features is taken at each split, and typically we choose 𝑚 ≈ 𝑝 —

that is, the number of features considered at each split is approximately equal to the square

root of the total number of features

 The algorithm results in greater tree diversity, which (again) trades a higher bias for a lower

variance, generally yielding an overall better model

16

https://dafriedman97.github.io/mlbook/content/c6/s1/random_forests.html

Ensemble method - Random Forests

 Suppose that there is one very strong feature in the dataset, along with a

number of moderately strong features. Then in the collection of bagged

trees, most or all of the trees will use this strong feature in the top split

 Consequently, all of the bagged trees will look quite similar to each other. Averaging

many highly correlated quantities does not lead to as large of a reduction in variance as

averaging many uncorrelated quantities

 Random forests overcome this problem by forcing each split to consider only a subset

of the features. Using a small value of 𝑚 in building a random forest will typically be

helpful when we have a large number of correlated features

 It is possible to make trees even more random by also using random thresholds for

each feature rather than searching for the best possible thresholds

 This is call Extremely Randomized Trees ensemble (or Extra-Trees)

17

https://dafriedman97.github.io/mlbook/content/c6/s1/random_forests.html

4. Ensemble method - Boosting

 Like bagging, boosting is a general approach that can be applied to many

statistical learning methods for regression or classification

 Recall that bagging involves creating multiple copies of the original training data set using

the bootstrap, fitting a separate decision tree to each copy, and then combining all of the

trees in order to create a single predictive model

 Notably, each tree is built on a bootstrap data set, independent of the other trees

 Boosting works in a similar way, except that the trees are grown sequentially:

each tree is grown using information from previously grown trees

 Boosting does not involve bootstrap sampling; instead each tree is fit on a modified version

of the original data set

18

https://dafriedman97.github.io/mlbook/content/c6/s1/boosting.html

AdaBoost

 One way for a new predictor to correct its predecessor is to pay a bit more

attention to the training instances that the predecessor underfitted

 This results in new predictors focusing more and more on the hard cases. This is the

technique used by AdaBoost

19

 For example, when training an AdaBoost

classifier, the algorithm first trains a base

classifier and uses it to make predictions on the

training set. The algorithm then increases the

relative weight of misclassified training

instances. Then it trains a second classifier,

using the updated weights, and again makes

predictions on the training set, updates the

instance weights, and so on

𝛼𝑗 = η log
1 − 𝑒𝑗

𝑒𝑗
ො𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘

𝑗=1, ො𝑦=𝑘

𝑛

𝛼𝑗

https://dafriedman97.github.io/mlbook/content/c6/s1/boosting.html#boosting

AdaBoost

 The following shows the decision boundaries of five consecutive predictors on

the moons dataset

 The first classifier gets many instances wrong, so their weights get boosted. The second

classifier therefore does a better job on these instances, and so on

20

 The plot on the right represents the

same sequence of predictors, except

that the learning rate is halved

 As you can see, this sequential learning

technique has some similarities with

Gradient Descent, except that instead

of tweaking a single predictor’s

parameters to minimize a cost function,

AdaBoost adds predictors to the

ensemble, gradually making it better

Gradient Boosting

 Another very popular boosting algorithm is Gradient Boosting

21

 Just like AdaBoost, Gradient Boosting works

by sequentially adding predictors to an

ensemble, each one correcting its predecessor.

However, instead of tweaking the instance

weights at every iteration like AdaBoost does,

this method tries to fit the new predictor to the

residual errors made by the previous predictor

Boosting algorithm for regression trees

22

What is the idea behind this procedure?

 Unlike fitting a single large decision tree to the data, which amounts to fitting

the data hard and potentially overfitting, the boosting approach instead learns

slowly

 Given the current model, we fit a decision tree to the residuals from the model. We then

add this new decision tree into the fitted function in order to update the residuals

 Each of these trees can be rather small, with just a few terminal nodes, determined by the

parameter 𝑑 in the algorithm

 By fitting small trees to the residuals, we slowly improve መ𝑓 in areas where it does not

perform well. The shrinkage parameter 𝜆 slows the process down even further, allowing

more and different shaped trees to attack the residuals

23

Boosting for classification

 Boosting has three tuning parameters

 The number of trees 𝐵 (Choose by CV)

 Unlike bagging and random forests, boosting can overfit if 𝐵 is too large, although this

overfitting tends to occur slowly if at all. We use cross-validation to select 𝐵

 The shrinkage parameter 𝜆 (Typical values are 0.01 or 0.001)

 The number 𝑑 of splits in each tree (Often 𝑑 = 1 works well, in which case each tree is a

stump, consisting of a single split and resulting in an additive model)

 Boosting for classification is similar in spirit to boosting for regression, but is a

bit more complex. We will not go into detail here

 Can learn about the details in Elements of Statistical Learning, chapter 10

24

5. XGBoost

 XGBoost, short for Extreme Gradient Boosting is a form of gradient boosting

included built-in regularization and impressive gains in speed

 The need for faster algorithms is evident when dealing with big data

 XGBoost or Gradient Boosting Decision Tree (GBDT)

 Don’t need to perform scaling (Only the relative size matters)

 When given a missing data point, XGBoost treat missing value as a feature and scores

different split options and chooses the one with the best results

25

https://towardsdatascience.com/catboost-vs-light-gbm-vs-xgboost-5f93620723db

https://arxiv.org/pdf/1603.02754.pdf
https://stats.stackexchange.com/questions/353462/what-are-the-implications-of-scaling-the-features-to-xgboost
https://towardsdatascience.com/catboost-vs-light-gbm-vs-xgboost-5f93620723db

XGBoost

 XGBoot presents

 Can handle sparse matrix (Sparsity-aware split finding)

 Approximate split-finding algorithm on weighted quantile

 Parallel computing – Quantile sketch

 Cache-aware access – improve cache performance

 Block compression

26
https://www.youtube.com/watch?v=oRrKeUCEbq8

https://www.youtube.com/watch?v=oRrKeUCEbq8
https://gist.github.com/jboner/2841832
https://www.youtube.com/watch?v=oRrKeUCEbq8

XGBoost

 Performance gain

 XGBoost adds built-in regularization to achieve accuracy gains beyond gradient boosting.

XGBoost includes regularization as part of the learning objective, as contrasted with

gradient boosting and random forests. XGBoost is a regularized version of gradient

boosting

 For more information about the objective function, please refer to here or here

 In addition to the regularization term, it used an approximation similar to Newton's Method

which is more accurate than naïve gradient boosting. An in depth discussion can be found here

 Take a look for how to handle categorical variables and missing value

 Encode categorical variable before entering the algorithm

 Missing value can be automatically handled

27

https://xgboost.readthedocs.io/en/latest/tutorials/model.html#tree-boosting
https://www.youtube.com/watch?v=ZVFeW798-2I
https://stats.stackexchange.com/questions/202858/xgboost-loss-function-approximation-with-taylor-expansion
https://xgboost.readthedocs.io/en/stable/tutorials/categorical.html
https://xgboost.readthedocs.io/en/stable/faq.html#how-to-deal-with-missing-values

LightGBM

 For speed, use Histogram-based Gradient Boosting (HGB) and Exclusive

Feature Bundling

 It works by binning the inputs features, replacing them with integers. The number of bins is

controlled defaults to 255 and cannot be set any higher than this. The way the bins are built

(𝑂(𝑛)) removes the need for sorting (O(𝑛𝑙𝑜𝑔 𝑛)) the features when training each tree

 The complexity of split a single node reduce from 𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 × 𝑛𝑙𝑜𝑔(𝑛)) to 𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 × 𝑛)

 Binning can enormously reduce the number of possible thresholds that the training

algorithm needs to evaluate. Moreover, working with integers makes it possible to use

faster and more memory-efficient data structures

28

 Exclusive Feature Bundling algorithm, which

can reduce the number of features by

regrouping mutually exclusive features into

bundle

https://lightgbm.readthedocs.io/en/latest/Features.html
https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://stackoverflow.com/questions/45513511/decision-trees-choosing-thresholds-to-split-objects

LightGBM

 Optimization in accuracy

 Gradient-based One-Side Sampling (GOSS) which adjust the sampling strategy

 Keeps all data instances with large gradients and performs random sampling for data instances

with small gradients. Data points with larger gradients have higher errors and would be important

for finding the optimal split point

 Leaf-wise (Best-first) tree growth instead of fixed ordered, see discussion here

 Optimal Split for Categorical Features

 Use strategy similar to target encoding

29 https://medium.com/riskified-technology/xgboost-lightgbm-or-catboost-which-boosting-

algorithm-should-i-use-e7fda7bb36bc

https://datascience.stackexchange.com/questions/26699/decision-trees-leaf-wise-best-first-and-level-wise-tree-traverse
https://www.tandfonline.com/doi/abs/10.1080/01621459.1958.10501479
https://medium.com/riskified-technology/xgboost-lightgbm-or-catboost-which-boosting-algorithm-should-i-use-e7fda7bb36bc

CatBoost

 Symmetric trees

 CatBoost builds symmetric (balanced) trees, unlike XGBoost and LightGBM. In every step,

leaves from the previous tree are split using the same condition. The feature-split pair that

accounts for the lowest loss is selected and used for all the level’s nodes

 This balanced tree architecture aids in efficient CPU implementation, decreases prediction time

and controls overfitting as the structure serves as regularization.

 Ordered boosting

 When calculating the gradient estimate of a data instance, classic algorithms use the same

data that the model was built with. CatBoost, on the other hand, uses the concept of

ordered boosting, a permutation-driven approach to train model on a subset of data while

calculating residuals on another subset, thus preventing target leakage and overfitting.

30

CatBoost

 Sampling techniques

 MVS can be considered as an improved version of the GOSS, and provide lower variance

 CatBoost adds native supports all kinds of features be it numeric, categorical,

or text and saves time and effort of preprocessing

 Take a look at how to deal with categorical features at here

 Visualization tools provided

31

https://catboost.ai/en/docs/concepts/algorithm-main-stages_bootstrap-options#mvs
https://neptune.ai/blog/when-to-choose-catboost-over-xgboost-or-lightgbm
https://github.com/catboost/tutorials/blob/master/categorical_features/categorical_features_parameters.ipynb

Hyperparameters

1. For faster speed

 Setting bagging fraction ratio to randomly choose instances

 Use feature sub-sampling (random subspace) by setting the fraction of features

 Use smaller number of bins for Histogram-based Gradient Boosting

2. For better accuracy

 Use smaller learning rate with larger number of iterations (number of estimators)

 Use larger number of bins for Histogram-based Gradient Boosting

 Try different categorical encoding methods

3. Prevent overfitting

 Use larger value of number of data in leaf to avoid splitting

 Use smaller number of depth to avoid growing deeper tree

 Use DART (Like dropout in neural network)

 Try to adjust regularization strength in the objective function
32

https://xgboost.readthedocs.io/en/stable/tutorials/dart.html

Hyperparameters

XGBoost LightGBM CatBoost

Speed subsample

colsample_bytree

n_estimator

bagging_fraction

feature_fraction

num_iterations

subsample

rsm

iterations

Control overfitting/accuracy learning_rate (0.01~0.2)

max_depth

min_child_weight

learning_rate

max_depth, num_leaves

min_data_in_leaf

learning_rate

depth

l2-leaf-reg

Categorical variable Experimental categorical_feature cat_features

one_hot_max_szie

33

Conclusion

 In conclusion, ensemble learning is versatile, powerful, and fairly simple to use

 Ensemble methods like voting classifiers stacking classifiers can help push your system’s

performance to its limits

 Random Forests, AdaBoost and GBRT are among the first models you should test on most

Machine Learning tasks, and they particularly shine with heterogeneous tabular data.

Moreover, as they require very little preprocessing, they’re great to get a prototype up and

running quickly

 About the choice of the framework

 XGBoost have largest community and provide sufficient support for production

 LightGBM may be a better choice when considering the speed and accuracy

 CatBoost is a choice when the dataset is small or when the categorical variables are

important in the model

34

References

[1] Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition

Chapter 6,7

[2] An Introduction to Statistical Learning, second edition

[3] Hands-On Gradient Boosting with XGBoost and scikit-learn

35

https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
https://www.statlearning.com/
https://github.com/PacktPublishing/Hands-On-Gradient-Boosting-with-XGBoost-and-Scikit-learn

Appendix

36

Resources and libraries

 Gradient boosting

 https://www.kaggle.com/code/alexisbcook/xgboost

 https://neptune.ai/blog/when-to-choose-catboost-over-xgboost-or-lightgbm

 StaQuest about Gradient Boosting

 StaQuest about XGBoost

 Libraries for gradient boosting

 XGBoost

 LightGBM

 CatBoost

 https://www.tensorflow.org/decision_forests

37

https://www.kaggle.com/code/alexisbcook/xgboost
https://neptune.ai/blog/when-to-choose-catboost-over-xgboost-or-lightgbm
https://www.youtube.com/watch?v=3CC4N4z3GJc&t=0s
https://www.youtube.com/watch?v=3CC4N4z3GJc&t=0s
https://xgboost.readthedocs.io/en/stable/
https://lightgbm.readthedocs.io/en/latest/
https://catboost.ai/
https://xgboost.readthedocs.io/en/stable/

Resources and libraries

 Dynamic selection or dynamic ensemble

 https://github.com/Menelau/DESlib

 Ensemble for neural network

 https://ensemble-pytorch.readthedocs.io/en/latest/

38

https://github.com/Menelau/DESlib
https://ensemble-pytorch.readthedocs.io/en/latest/

Classification Trees

 Very similar to a regression tree, except that it is used to predict a qualitative

response rather than a quantitative one

 For a classification tree, we predict that each observation belongs to the most commonly

occurring class of training observations in the region to which it belongs

 Just as in the regression setting, we use recursive binary splitting to grow a tree

 A natural alternative to RSS is the classification error rate. This is simply the fraction of the

training observations in that region that do not belong to the most common class

𝐸 = 1 −max
𝑘
(Ƹ𝑝𝑚𝑘)

Here Ƹ𝑝𝑚𝑘 represents the proportion of training observations in the 𝑚th region that are from

the 𝑘th class

 However classification error is not sufficiently sensitive for tree-growing, and

in practice two other measures are preferable

39

https://dafriedman97.github.io/mlbook/content/c5/s1/classification_tree.html

Gini index and Deviance

 The Gini index is defined by

𝐺 =

𝑖=1

𝐾

Ƹ𝑝𝑚𝑘(1 − Ƹ𝑝𝑚𝑘)

 A measure of total variance across the 𝐾 classes. The Gini index takes on a small value if

all of the Ƹ𝑝𝑚𝑘’s are close to zero or one

 For this reason the Gini index is referred to as a measure of node purity — a small value

indicates that a node contains predominantly observations from a single class

 An alternative to the Gini index is cross-entropy, given by

𝐷 = −

𝑘=1

𝐾

Ƹ𝑝𝑚𝑘 log Ƹ𝑝𝑚𝑘

 It turns out that the Gini index and the cross-entropy are very similar

numerically (differentiable)
40

Another way to train stacking

 To ensures that the predictions are “clean”

 The first subset is used to train the predictors in the first layer. Next, the first layer’s

predictors are used to make predictions on the second (held-out) set (since the predictors

never saw these instances during training)

41

 For each instance in the hold-out

set, there are three predicted

values. We can create a new

training set using these predicted

values as input features, and

keeping the target values

 The blender is trained on this new

training set, so it learns to predict

the target value, given the first

layer’s predictions

http://rasbt.github.io/mlxtend/user_guide/classifier/StackingClassifier/

AdaBoost

42

ESL 10.9 – Boosting Trees

43

